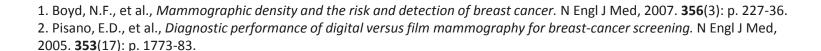

Diagnostic value of <u>Three-dimensional</u>
<u>UltRasound in breast cancer screening</u>
participants referred with a <u>BI-RADS 0</u> test result:
a comparison of imaging strategies (TURBO)

Bianca den Dekker, MD - PhD student


Prof dr R.M. Pijnappel Prof dr H.M. Verkooijen Dr M. Broeders

Breast density

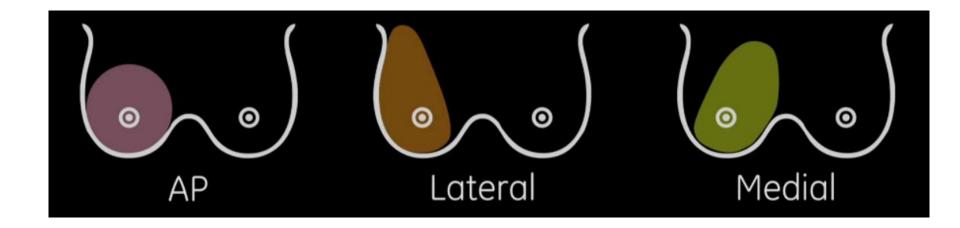
- High breast density reduces sensitivity of mammography¹
- High breast density is a risk factor for breast cancer²

Breast Ultrasound

- High inter-observer variability
- Time consuming

3-Dimensional Automated Breast Ultrasound

Invenia ABUS



Invenia ABUS

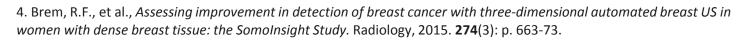
Invenia ABUS

Advantages 3D ABUS

- Standardized image acquisition protocol
- Image acquisition by technician
- Digital storage
 - Enables re-evaluation, double reading, CAD³

SomoInsight Study⁴

- Design: Multicenter observational study
- Population: 15.315 women, mean age 53.3, with heterogeneously (50-75%) or extremely (>75%) dense breasts
- Addition of ABUS to screening mammography



SomoInsight Study⁴

- Design: Multicenter observational study
- Population: 15.315 women, mean age 53.3, with heterogeneously (50-75%) or extremely (>75%) dense breasts
- Addition of ABUS to screening mammography

Results

- Additional 1.9 detected cancers per 1000 (95% CI 1.2-2.7, p-value < 0.001)
 93.3% of additional cancers were invasive
- Increase in recall rate 284.9 per 1000 (95% CI 278-292, p-value < 0.001)

EASY Study⁵

- **Design**: single center observational study
- **Population**: 1.668 asymptomatic women, mean age 49.5, with heterogeneously (50-75%) or extremely (>75%) dense breasts
- Addition of ABUS to mammography

EASY Study⁵

- **Design**: single center observational study
- Population: 1.668 asymptomatic women, mean age 49.5, with heterogeneously (50-75%) or extremely (>75%) dense breasts
- Addition of ABUS to mammography

Results

- Additional 2.4 detected cancers per 1000 95% CI 0.6-4.8, p-value < 0.001
- Additional 9.0 recalls per 1000
 95% CI 3.0 15.0, p-value 0.004

^{5.} Wilczek et al. Adding 3D Automated Breast Ultrasound to mammography screening in women with heterogeneously and extremely dense breasts. Report from a hospital-based, high-volume, single-center breast cancer screening program. European Journal of Radiology 85 (2016) 1554–1563

Rationale TURB0 study

T U R BO

- BI-RADS 0 referral
 - 88% false positive result⁶
 - 20% undergoes invasive diagnostic procedures⁶
- → Optimize the imaging strategy in women referred with a BI-RADS 0 result

Objective TURB0 study

To investigate the diagnostic accuracy of 3DUS as a standalone imaging modality as well as in combination with conventional imaging modalities to diagnose breast cancer in Dutch breast cancer screening participants referred with a BI-RADS 0 mammography result.

Objective TURB0 study

To investigate the diagnostic accuracy of 3DUS as a standalone imaging modality as well as in combination with conventional imaging modalities to diagnose breast cancer in Dutch breast cancer screening participants referred with a BI-RADS 0 mammography result.

Secondary objectives

- To investigate the diagnostic accuracy among subgroups of patients based on mammographic density and age.
- To determine the biopsy referral rate for the different imaging strategies.
- To assess the interobserver reliability for 3DUS.

Study design

Multicenter diagnostic study

Study design

Multicenter diagnostic study

Participating hospitals

Elisabeth TweeSteden Ziekenhuis Tilburg

Rijnstate Ziekenhuis Arnhem

Catharina Ziekenhuis Eindhoven

Study design

Multicenter diagnostic study

Participating hospitals

Elisabeth TweeSteden Ziekenhuis Tilburg

Rijnstate Ziekenhuis Arnhem

Catharina Ziekenhuis Eindhoven

Study population: Dutch breast cancer screening participants with a BI-RADS 0 mammography result, who are referred to one of the participating hospitals for further diagnostic work-up

Sample size: 600

^{*3-}D ultrasound image acquisition has to be completed before any intervention is performed

Reader study

- Independent assessment of different imaging strategies
 - 3D ABUS
 - Tomosynthesis + HHUS ('current practice')
 - Tomosynthesis + 3D ABUS
 - Tomosynthesis + HHUS + 3D ABUS

Planning

Time period	Activities
April 2018 – October 2019	Patient inclusion
	Data collection
End of 2019	First results (histopathological outcome)
End of 2021	Final results (follow up outcome)

B.M. den Dekker

Department of Radiology

UMC Utrecht Q1.4.43

PO box 85500, 3508 GA Utrecht

106 39636265

B.M.denDekker-3@umcutrecht.nl

